File R-Rcurvep.spec of Package R-Rcurvep

# Automatically generated by CRAN2OBS
# 
# Spec file for package Rcurvep 
# This file is auto-generated using information in the package source, 
# esp. Description and Summary. Improvements in that area should be 
# discussed with upstream. 
# 
# Copyright (c) 2021 SUSE LINUX GmbH, Nuernberg, Germany. 
# 
# All modifications and additions to the file contributed by third parties 
# remain the property of their copyright owners, unless otherwise agreed 
# upon. The license for this file, and modifications and additions to the 
# file, is the same license as for the pristine package itself (unless the 
# license for the pristine package is not an Open Source License, in which 
# case the license is the MIT License). An "Open Source License" is a 
# license that conforms to the Open Source Definition (Version 1.9) 
# published by the Open Source Initiative. 
#  
# Please submit bugfixes or comments via http://bugs.opensuse.org/ 
# 
 
%global packname  Rcurvep 
%global rlibdir   %{_libdir}/R/library 
 
Name:           R-%{packname} 
Version:        1.2.0 
Release:        0 
Summary:        Concentration-Response Data Analysis using Curvep 
Group:          Development/Libraries/Other 
License:        MIT + file LICENSE 
URL:            http://cran.r-project.org/web/packages/%{packname} 
Source:         Rcurvep_1.2.0.tar.gz 
Requires:       R-base 
Requires:	R-dplyr
Requires:	R-tibble
Requires:	R-magrittr
Requires:	R-tidyselect
Requires:	R-tidyr
Requires:	R-purrr
Requires:	R-rlang
Requires:	R-stringr
Requires:	R-ggplot2
Requires:	R-Rdpack
Requires:	R-ellipsis
Requires:	R-generics
Requires:	R-glue
Requires:	R-lifecycle
Requires:	R-R6
Requires:	R-vctrs
Requires:	R-digest
Requires:	R-gtable
Requires:	R-isoband
Requires:	R-scales
Requires:	R-withr
Requires:	R-rbibutils
Requires:	R-stringi
Requires:	R-fansi
Requires:	R-pillar
Requires:	R-pkgconfig
Requires:	R-cpp11
Requires:	R-cli
Requires:	R-crayon
Requires:	R-utf8
Requires:	R-farver
Requires:	R-labeling
Requires:	R-munsell
Requires:	R-RColorBrewer
Requires:	R-viridisLite
Requires:	R-colorspace
 
# %%if 0%%{?sle_version} > 120400 || 0%%{?is_opensuse} 
# # Three others commonly needed 
# BuildRequires:  tex(ae.sty) 
# BuildRequires:  tex(fancyvrb.sty) 
# BuildRequires:  tex(inconsolata.sty) 
# BuildRequires:  tex(natbib.sty) 
# %else 
# BuildRequires:  texlive 
# %endif 
# BuildRequires:  texinfo 
BuildRequires:  fdupes 
BuildRequires:  R-base 
BuildRequires: 	R-dplyr
BuildRequires: 	R-tibble
BuildRequires: 	R-magrittr
BuildRequires: 	R-tidyselect
BuildRequires: 	R-tidyr
BuildRequires: 	R-purrr
BuildRequires: 	R-rlang
BuildRequires: 	R-stringr
BuildRequires: 	R-ggplot2
BuildRequires: 	R-Rdpack
BuildRequires: 	R-ellipsis
BuildRequires: 	R-generics
BuildRequires: 	R-glue
BuildRequires: 	R-lifecycle
BuildRequires: 	R-R6
BuildRequires: 	R-vctrs
BuildRequires: 	R-digest
BuildRequires: 	R-gtable
BuildRequires: 	R-isoband
BuildRequires: 	R-scales
BuildRequires: 	R-withr
BuildRequires: 	R-rbibutils
BuildRequires: 	R-stringi
BuildRequires: 	R-fansi
BuildRequires: 	R-pillar
BuildRequires: 	R-pkgconfig
BuildRequires: 	R-cpp11-devel
BuildRequires: 	R-cli
BuildRequires: 	R-crayon
BuildRequires: 	R-utf8
BuildRequires: 	R-farver
BuildRequires: 	R-labeling
BuildRequires: 	R-munsell
BuildRequires: 	R-RColorBrewer
BuildRequires: 	R-viridisLite
BuildRequires: 	R-colorspace
 
Suggests:	R-testthat
Suggests:	R-knitr
Suggests:	R-rmarkdown
Suggests:	R-tcpl
%description 
Provide an R interface for processing concentration-response datasets 
using Curvep, a response noise filtering algorithm. The algorithm was 
described in the publications (Sedykh A et al. (2011) 
<doi:10.1289/ehp.1002476> and Sedykh A (2016) 
<doi:10.1007/978-1-4939-6346-1_14>). Other parametric fitting 
approaches (e.g., Hill equation) are also adopted for ease of 
comparison. Also, methods for calculating the confidence interval 
around the activity metrics are also provided. The methods are based on 
the bootstrap approach to simulate the datasets (Hsieh J-H et al. 
<doi:10.1093/toxsci/kfy258>). The simulated datasets can be used to 
derive the baseline noise threshold in an assay endpoint. This 
threshold is critical in the toxicological studies to derive the 
point-of-departure (POD). 
 
%prep 
%setup -q -c -n %{packname} 
# the next line is needed, because we build without --clean in between two packages 
rm -rf ~/.R  
 
 
%build 
 
%install 
mkdir -p %{buildroot}%{rlibdir} 
%{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} 
test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) 
rm -f %{buildroot}%{rlibdir}/R.css 
%fdupes -s %{buildroot}%{rlibdir} 
 
#%%check 
#%%{_bindir}/R CMD check %%{packname} 
 
%files 
%dir %{rlibdir}/%{packname} 
%doc %{rlibdir}/%{packname}/DESCRIPTION
%{rlibdir}/%{packname}/INDEX
%license %{rlibdir}/%{packname}/LICENSE
%{rlibdir}/%{packname}/Meta
%{rlibdir}/%{packname}/NAMESPACE
%doc %{rlibdir}/%{packname}/NEWS.md
%{rlibdir}/%{packname}/R
%{rlibdir}/%{packname}/REFERENCES.bib
%{rlibdir}/%{packname}/data
%doc %{rlibdir}/%{packname}/doc
%doc %{rlibdir}/%{packname}/help
%doc %{rlibdir}/%{packname}/html
 
%changelog
openSUSE Build Service is sponsored by