File CVE-2023-46809.patch of Package nodejs16
Index: node-v16.20.2/test/parallel/test-crypto-rsa-dsa-revert.js
===================================================================
--- /dev/null
+++ node-v16.20.2/test/parallel/test-crypto-rsa-dsa-revert.js
@@ -0,0 +1,475 @@
+'use strict';
+// Flags: --security-revert=CVE-2023-46809
+const common = require('../common');
+if (!common.hasCrypto)
+ common.skip('missing crypto');
+
+const assert = require('assert');
+const crypto = require('crypto');
+
+const constants = crypto.constants;
+
+const fixtures = require('../common/fixtures');
+
+// Test certificates
+const certPem = fixtures.readKey('rsa_cert.crt');
+const keyPem = fixtures.readKey('rsa_private.pem');
+const rsaKeySize = 2048;
+const rsaPubPem = fixtures.readKey('rsa_public.pem', 'ascii');
+const rsaKeyPem = fixtures.readKey('rsa_private.pem', 'ascii');
+const rsaKeyPemEncrypted = fixtures.readKey('rsa_private_encrypted.pem',
+ 'ascii');
+const dsaPubPem = fixtures.readKey('dsa_public.pem', 'ascii');
+const dsaKeyPem = fixtures.readKey('dsa_private.pem', 'ascii');
+const dsaKeyPemEncrypted = fixtures.readKey('dsa_private_encrypted.pem',
+ 'ascii');
+const rsaPkcs8KeyPem = fixtures.readKey('rsa_private_pkcs8.pem');
+const dsaPkcs8KeyPem = fixtures.readKey('dsa_private_pkcs8.pem');
+
+const ec = new TextEncoder();
+
+const openssl1DecryptError = {
+ message: 'error:06065064:digital envelope routines:EVP_DecryptFinal_ex:' +
+ 'bad decrypt',
+ code: 'ERR_OSSL_EVP_BAD_DECRYPT',
+ reason: 'bad decrypt',
+ function: 'EVP_DecryptFinal_ex',
+ library: 'digital envelope routines',
+};
+
+const decryptError = common.hasOpenSSL3 ?
+ { message: 'error:1C800064:Provider routines::bad decrypt' } :
+ openssl1DecryptError;
+
+const decryptPrivateKeyError = common.hasOpenSSL3 ? {
+ message: 'error:1C800064:Provider routines::bad decrypt',
+} : openssl1DecryptError;
+
+function getBufferCopy(buf) {
+ return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);
+}
+
+// Test RSA encryption/decryption
+{
+ const input = 'I AM THE WALRUS';
+ const bufferToEncrypt = Buffer.from(input);
+ const bufferPassword = Buffer.from('password');
+
+ let encryptedBuffer = crypto.publicEncrypt(rsaPubPem, bufferToEncrypt);
+
+ // Test other input types
+ let otherEncrypted;
+ {
+ const ab = getBufferCopy(ec.encode(rsaPubPem));
+ const ab2enc = getBufferCopy(bufferToEncrypt);
+
+ crypto.publicEncrypt(ab, ab2enc);
+ crypto.publicEncrypt(new Uint8Array(ab), new Uint8Array(ab2enc));
+ crypto.publicEncrypt(new DataView(ab), new DataView(ab2enc));
+ otherEncrypted = crypto.publicEncrypt({
+ key: Buffer.from(ab).toString('hex'),
+ encoding: 'hex'
+ }, Buffer.from(ab2enc).toString('hex'));
+ }
+
+ let decryptedBuffer = crypto.privateDecrypt(rsaKeyPem, encryptedBuffer);
+ const otherDecrypted = crypto.privateDecrypt(rsaKeyPem, otherEncrypted);
+ assert.strictEqual(decryptedBuffer.toString(), input);
+ assert.strictEqual(otherDecrypted.toString(), input);
+
+ decryptedBuffer = crypto.privateDecrypt(rsaPkcs8KeyPem, encryptedBuffer);
+ assert.strictEqual(decryptedBuffer.toString(), input);
+
+ let decryptedBufferWithPassword = crypto.privateDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'password'
+ }, encryptedBuffer);
+
+ const otherDecryptedBufferWithPassword = crypto.privateDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: ec.encode('password')
+ }, encryptedBuffer);
+
+ assert.strictEqual(
+ otherDecryptedBufferWithPassword.toString(),
+ decryptedBufferWithPassword.toString());
+
+ decryptedBufferWithPassword = crypto.privateDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'password'
+ }, encryptedBuffer);
+
+ assert.strictEqual(decryptedBufferWithPassword.toString(), input);
+
+ encryptedBuffer = crypto.publicEncrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'password'
+ }, bufferToEncrypt);
+
+ decryptedBufferWithPassword = crypto.privateDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'password'
+ }, encryptedBuffer);
+ assert.strictEqual(decryptedBufferWithPassword.toString(), input);
+
+ encryptedBuffer = crypto.privateEncrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, bufferToEncrypt);
+
+ decryptedBufferWithPassword = crypto.publicDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, encryptedBuffer);
+ assert.strictEqual(decryptedBufferWithPassword.toString(), input);
+
+ // Now with explicit RSA_PKCS1_PADDING.
+ encryptedBuffer = crypto.privateEncrypt({
+ padding: crypto.constants.RSA_PKCS1_PADDING,
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, bufferToEncrypt);
+
+ decryptedBufferWithPassword = crypto.publicDecrypt({
+ padding: crypto.constants.RSA_PKCS1_PADDING,
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, encryptedBuffer);
+ assert.strictEqual(decryptedBufferWithPassword.toString(), input);
+
+ // Omitting padding should be okay because RSA_PKCS1_PADDING is the default.
+ decryptedBufferWithPassword = crypto.publicDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, encryptedBuffer);
+ assert.strictEqual(decryptedBufferWithPassword.toString(), input);
+
+ // Now with RSA_NO_PADDING. Plaintext needs to match key size.
+ // OpenSSL 3.x has a rsa_check_padding that will cause an error if
+ // RSA_NO_PADDING is used.
+ if (!common.hasOpenSSL3) {
+ {
+ const plaintext = 'x'.repeat(rsaKeySize / 8);
+ encryptedBuffer = crypto.privateEncrypt({
+ padding: crypto.constants.RSA_NO_PADDING,
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, Buffer.from(plaintext));
+
+ decryptedBufferWithPassword = crypto.publicDecrypt({
+ padding: crypto.constants.RSA_NO_PADDING,
+ key: rsaKeyPemEncrypted,
+ passphrase: bufferPassword
+ }, encryptedBuffer);
+ assert.strictEqual(decryptedBufferWithPassword.toString(), plaintext);
+ }
+ }
+
+ encryptedBuffer = crypto.publicEncrypt(certPem, bufferToEncrypt);
+
+ decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
+ assert.strictEqual(decryptedBuffer.toString(), input);
+
+ encryptedBuffer = crypto.publicEncrypt(keyPem, bufferToEncrypt);
+
+ decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
+ assert.strictEqual(decryptedBuffer.toString(), input);
+
+ encryptedBuffer = crypto.privateEncrypt(keyPem, bufferToEncrypt);
+
+ decryptedBuffer = crypto.publicDecrypt(keyPem, encryptedBuffer);
+ assert.strictEqual(decryptedBuffer.toString(), input);
+
+ assert.throws(() => {
+ crypto.privateDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'wrong'
+ }, bufferToEncrypt);
+ }, decryptError);
+
+ assert.throws(() => {
+ crypto.publicEncrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: 'wrong'
+ }, encryptedBuffer);
+ }, decryptError);
+
+ encryptedBuffer = crypto.privateEncrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: Buffer.from('password')
+ }, bufferToEncrypt);
+
+ assert.throws(() => {
+ crypto.publicDecrypt({
+ key: rsaKeyPemEncrypted,
+ passphrase: Buffer.from('wrong')
+ }, encryptedBuffer);
+ }, decryptError);
+}
+
+function test_rsa(padding, encryptOaepHash, decryptOaepHash) {
+ const size = (padding === 'RSA_NO_PADDING') ? rsaKeySize / 8 : 32;
+ const input = Buffer.allocUnsafe(size);
+ for (let i = 0; i < input.length; i++)
+ input[i] = (i * 7 + 11) & 0xff;
+ const bufferToEncrypt = Buffer.from(input);
+
+ padding = constants[padding];
+
+ const encryptedBuffer = crypto.publicEncrypt({
+ key: rsaPubPem,
+ padding: padding,
+ oaepHash: encryptOaepHash
+ }, bufferToEncrypt);
+
+ let decryptedBuffer = crypto.privateDecrypt({
+ key: rsaKeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ assert.deepStrictEqual(decryptedBuffer, input);
+
+ decryptedBuffer = crypto.privateDecrypt({
+ key: rsaPkcs8KeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ assert.deepStrictEqual(decryptedBuffer, input);
+}
+
+test_rsa('RSA_NO_PADDING');
+test_rsa('RSA_PKCS1_PADDING');
+test_rsa('RSA_PKCS1_OAEP_PADDING');
+
+// Test OAEP with different hash functions.
+test_rsa('RSA_PKCS1_OAEP_PADDING', undefined, 'sha1');
+test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha1', undefined);
+test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha256');
+test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha512', 'sha512');
+assert.throws(() => {
+ test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha512');
+}, {
+ code: 'ERR_OSSL_RSA_OAEP_DECODING_ERROR'
+});
+
+// The following RSA-OAEP test cases were created using the WebCrypto API to
+// ensure compatibility when using non-SHA1 hash functions.
+{
+ const { decryptionTests } =
+ JSON.parse(fixtures.readSync('rsa-oaep-test-vectors.js', 'utf8'));
+
+ for (const { ct, oaepHash, oaepLabel } of decryptionTests) {
+ const label = oaepLabel ? Buffer.from(oaepLabel, 'hex') : undefined;
+ const copiedLabel = oaepLabel ? getBufferCopy(label) : undefined;
+
+ const decrypted = crypto.privateDecrypt({
+ key: rsaPkcs8KeyPem,
+ oaepHash,
+ oaepLabel: oaepLabel ? label : undefined
+ }, Buffer.from(ct, 'hex'));
+
+ assert.strictEqual(decrypted.toString('utf8'), 'Hello Node.js');
+
+ const otherDecrypted = crypto.privateDecrypt({
+ key: rsaPkcs8KeyPem,
+ oaepHash,
+ oaepLabel: copiedLabel
+ }, Buffer.from(ct, 'hex'));
+
+ assert.strictEqual(otherDecrypted.toString('utf8'), 'Hello Node.js');
+ }
+}
+
+// Test invalid oaepHash and oaepLabel options.
+for (const fn of [crypto.publicEncrypt, crypto.privateDecrypt]) {
+ assert.throws(() => {
+ fn({
+ key: rsaPubPem,
+ oaepHash: 'Hello world'
+ }, Buffer.alloc(10));
+ }, {
+ code: 'ERR_OSSL_EVP_INVALID_DIGEST'
+ });
+
+ for (const oaepHash of [0, false, null, Symbol(), () => {}]) {
+ assert.throws(() => {
+ fn({
+ key: rsaPubPem,
+ oaepHash
+ }, Buffer.alloc(10));
+ }, {
+ code: 'ERR_INVALID_ARG_TYPE'
+ });
+ }
+
+ for (const oaepLabel of [0, false, null, Symbol(), () => {}, {}]) {
+ assert.throws(() => {
+ fn({
+ key: rsaPubPem,
+ oaepLabel
+ }, Buffer.alloc(10));
+ }, {
+ code: 'ERR_INVALID_ARG_TYPE'
+ });
+ }
+}
+
+// Test RSA key signing/verification
+let rsaSign = crypto.createSign('SHA1');
+let rsaVerify = crypto.createVerify('SHA1');
+assert.ok(rsaSign);
+assert.ok(rsaVerify);
+
+const expectedSignature = fixtures.readKey(
+ 'rsa_public_sha1_signature_signedby_rsa_private_pkcs8.sha1',
+ 'hex'
+);
+
+rsaSign.update(rsaPubPem);
+let rsaSignature = rsaSign.sign(rsaKeyPem, 'hex');
+assert.strictEqual(rsaSignature, expectedSignature);
+
+rsaVerify.update(rsaPubPem);
+assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
+
+// Test RSA PKCS#8 key signing/verification
+rsaSign = crypto.createSign('SHA1');
+rsaSign.update(rsaPubPem);
+rsaSignature = rsaSign.sign(rsaPkcs8KeyPem, 'hex');
+assert.strictEqual(rsaSignature, expectedSignature);
+
+rsaVerify = crypto.createVerify('SHA1');
+rsaVerify.update(rsaPubPem);
+assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
+
+// Test RSA key signing/verification with encrypted key
+rsaSign = crypto.createSign('SHA1');
+rsaSign.update(rsaPubPem);
+const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'password' };
+rsaSignature = rsaSign.sign(signOptions, 'hex');
+assert.strictEqual(rsaSignature, expectedSignature);
+
+rsaVerify = crypto.createVerify('SHA1');
+rsaVerify.update(rsaPubPem);
+assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
+
+rsaSign = crypto.createSign('SHA1');
+rsaSign.update(rsaPubPem);
+assert.throws(() => {
+ const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'wrong' };
+ rsaSign.sign(signOptions, 'hex');
+}, decryptPrivateKeyError);
+
+//
+// Test RSA signing and verification
+//
+{
+ const privateKey = fixtures.readKey('rsa_private_b.pem');
+ const publicKey = fixtures.readKey('rsa_public_b.pem');
+
+ const input = 'I AM THE WALRUS';
+
+ const signature = fixtures.readKey(
+ 'I_AM_THE_WALRUS_sha256_signature_signedby_rsa_private_b.sha256',
+ 'hex'
+ );
+
+ const sign = crypto.createSign('SHA256');
+ sign.update(input);
+
+ const output = sign.sign(privateKey, 'hex');
+ assert.strictEqual(output, signature);
+
+ const verify = crypto.createVerify('SHA256');
+ verify.update(input);
+
+ assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
+
+ // Test the legacy signature algorithm name.
+ const sign2 = crypto.createSign('RSA-SHA256');
+ sign2.update(input);
+
+ const output2 = sign2.sign(privateKey, 'hex');
+ assert.strictEqual(output2, signature);
+
+ const verify2 = crypto.createVerify('SHA256');
+ verify2.update(input);
+
+ assert.strictEqual(verify2.verify(publicKey, signature, 'hex'), true);
+}
+
+
+//
+// Test DSA signing and verification
+//
+{
+ const input = 'I AM THE WALRUS';
+
+ // DSA signatures vary across runs so there is no static string to verify
+ // against.
+ const sign = crypto.createSign('SHA1');
+ sign.update(input);
+ const signature = sign.sign(dsaKeyPem, 'hex');
+
+ const verify = crypto.createVerify('SHA1');
+ verify.update(input);
+
+ assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
+
+ // Test the legacy 'DSS1' name.
+ const sign2 = crypto.createSign('DSS1');
+ sign2.update(input);
+ const signature2 = sign2.sign(dsaKeyPem, 'hex');
+
+ const verify2 = crypto.createVerify('DSS1');
+ verify2.update(input);
+
+ assert.strictEqual(verify2.verify(dsaPubPem, signature2, 'hex'), true);
+}
+
+
+//
+// Test DSA signing and verification with PKCS#8 private key
+//
+{
+ const input = 'I AM THE WALRUS';
+
+ // DSA signatures vary across runs so there is no static string to verify
+ // against.
+ const sign = crypto.createSign('SHA1');
+ sign.update(input);
+ const signature = sign.sign(dsaPkcs8KeyPem, 'hex');
+
+ const verify = crypto.createVerify('SHA1');
+ verify.update(input);
+
+ assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
+}
+
+
+//
+// Test DSA signing and verification with encrypted key
+//
+const input = 'I AM THE WALRUS';
+
+{
+ const sign = crypto.createSign('SHA1');
+ sign.update(input);
+ assert.throws(() => {
+ sign.sign({ key: dsaKeyPemEncrypted, passphrase: 'wrong' }, 'hex');
+ }, decryptPrivateKeyError);
+}
+
+{
+ // DSA signatures vary across runs so there is no static string to verify
+ // against.
+ const sign = crypto.createSign('SHA1');
+ sign.update(input);
+ const signOptions = { key: dsaKeyPemEncrypted, passphrase: 'password' };
+ const signature = sign.sign(signOptions, 'hex');
+
+ const verify = crypto.createVerify('SHA1');
+ verify.update(input);
+
+ assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
+}
Index: node-v16.20.2/test/parallel/test-crypto-rsa-dsa.js
===================================================================
--- node-v16.20.2.orig/test/parallel/test-crypto-rsa-dsa.js
+++ node-v16.20.2/test/parallel/test-crypto-rsa-dsa.js
@@ -221,19 +221,37 @@ function test_rsa(padding, encryptOaepHa
oaepHash: encryptOaepHash
}, bufferToEncrypt);
- let decryptedBuffer = crypto.privateDecrypt({
- key: rsaKeyPem,
- padding: padding,
- oaepHash: decryptOaepHash
- }, encryptedBuffer);
- assert.deepStrictEqual(decryptedBuffer, input);
- decryptedBuffer = crypto.privateDecrypt({
- key: rsaPkcs8KeyPem,
- padding: padding,
- oaepHash: decryptOaepHash
- }, encryptedBuffer);
- assert.deepStrictEqual(decryptedBuffer, input);
+ if (padding === constants.RSA_PKCS1_PADDING) {
+ assert.throws(() => {
+ crypto.privateDecrypt({
+ key: rsaKeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ }, { code: 'ERR_INVALID_ARG_VALUE' });
+ assert.throws(() => {
+ crypto.privateDecrypt({
+ key: rsaPkcs8KeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ }, { code: 'ERR_INVALID_ARG_VALUE' });
+ } else {
+ let decryptedBuffer = crypto.privateDecrypt({
+ key: rsaKeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ assert.deepStrictEqual(decryptedBuffer, input);
+
+ decryptedBuffer = crypto.privateDecrypt({
+ key: rsaPkcs8KeyPem,
+ padding: padding,
+ oaepHash: decryptOaepHash
+ }, encryptedBuffer);
+ assert.deepStrictEqual(decryptedBuffer, input);
+ }
}
test_rsa('RSA_NO_PADDING');
Index: node-v16.20.2/src/crypto/crypto_cipher.cc
===================================================================
--- node-v16.20.2.orig/src/crypto/crypto_cipher.cc
+++ node-v16.20.2/src/crypto/crypto_cipher.cc
@@ -6,6 +6,7 @@
#include "node_buffer.h"
#include "node_internals.h"
#include "node_process-inl.h"
+#include "node_revert.h"
#include "v8.h"
namespace node {
@@ -1061,6 +1062,34 @@ void PublicKeyCipher::Cipher(const Funct
uint32_t padding;
if (!args[offset + 1]->Uint32Value(env->context()).To(&padding)) return;
+ if (EVP_PKEY_cipher == EVP_PKEY_decrypt &&
+ operation == PublicKeyCipher::kPrivate && padding == RSA_PKCS1_PADDING &&
+ !IsReverted(SECURITY_REVERT_CVE_2023_46809)) {
+ EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
+ CHECK(ctx);
+
+ if (EVP_PKEY_decrypt_init(ctx.get()) <= 0) {
+ return ThrowCryptoError(env, ERR_get_error());
+ }
+
+ int rsa_pkcs1_implicit_rejection =
+ EVP_PKEY_CTX_ctrl_str(ctx.get(), "rsa_pkcs1_implicit_rejection", "1");
+ // From the doc -2 means that the option is not supported.
+ // The default for the option is enabled and if it has been
+ // specifically disabled we want to respect that so we will
+ // not throw an error if the option is supported regardless
+ // of how it is set. The call to set the value
+ // will not affect what is used since a different context is
+ // used in the call if the option is supported
+ if (rsa_pkcs1_implicit_rejection <= 0) {
+ return THROW_ERR_INVALID_ARG_VALUE(
+ env,
+ "RSA_PKCS1_PADDING is no longer supported for private decryption,"
+ " this can be reverted with --security-revert=CVE-2023-46809");
+ }
+ }
+
+
const EVP_MD* digest = nullptr;
if (args[offset + 2]->IsString()) {
const Utf8Value oaep_str(env->isolate(), args[offset + 2]);
Index: node-v16.20.2/src/node_revert.h
===================================================================
--- node-v16.20.2.orig/src/node_revert.h
+++ node-v16.20.2/src/node_revert.h
@@ -18,7 +18,7 @@ namespace node {
#define SECURITY_REVERSIONS(XX) \
XX(CVE_2021_44531, "CVE-2021-44531", "Cert Verif Bypass via URI SAN") \
XX(CVE_2021_44532, "CVE-2021-44532", "Cert Verif Bypass via Str Inject") \
-// XX(CVE_2016_PEND, "CVE-2016-PEND", "Vulnerability Title")
+ XX(CVE_2023_46809, "CVE-2023-46809", "Marvin attack on PKCS#1 padding")
enum reversion {
#define V(code, ...) SECURITY_REVERT_##code,