File libwebp-optimize-huffman-decoding.patch of Package libwebp.29259
From f75dfbf23d1df1be52350b1a6fc5cfa6c2194499 Mon Sep 17 00:00:00 2001
From: skal <pascal.massimino@gmail.com>
Date: Thu, 28 Aug 2014 08:35:19 -0700
Subject: [PATCH] Speed up Huffman decoding for lossless
speed-up is ~1.6% for photographic image to 10% for graphical image
(1000 images corpus was sped up by 5.8 %)
Code by akramarz@google.com and jyrki@google.com
Change-Id: Iceb2e50e6cc761b9315a3865d22ec9d19b8011c6
Backported by Mike Gorse <mgorse@suse.com>
Also includes commits f9ced9 and 21735e
---
diff -urp libwebp-0.4.3.orig/src/dec/vp8l.c libwebp-0.4.3/src/dec/vp8l.c
--- libwebp-0.4.3.orig/src/dec/vp8l.c 2015-03-11 01:06:09.000000000 -0500
+++ libwebp-0.4.3/src/dec/vp8l.c 2021-05-17 14:28:42.458032440 -0500
@@ -50,6 +50,9 @@ static const uint16_t kAlphabetSize[HUFF
NUM_DISTANCE_CODES
};
+static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
+ 0, 1, 1, 1, 0
+};
#define NUM_CODE_LENGTH_CODES 19
static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
@@ -72,6 +75,29 @@ static const uint8_t kCodeToPlane[CODE_T
0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
};
+// Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
+// and distance alphabets are constant (256 for red, blue and alpha, 40 for
+// distance) and lookup table sizes for them in worst case are 630 and 410
+// respectively. Size of green alphabet depends on color cache size and is equal
+// to 256 (green component values) + 24 (length prefix values)
+// + color_cache_size (between 0 and 2048).
+// All values computed for 8-bit first level lookup with tests/tools/enough.cc.
+#define FIXED_TABLE_SIZE (630 * 3 + 410)
+static const int kTableSize[12] = {
+ FIXED_TABLE_SIZE + 654,
+ FIXED_TABLE_SIZE + 656,
+ FIXED_TABLE_SIZE + 658,
+ FIXED_TABLE_SIZE + 662,
+ FIXED_TABLE_SIZE + 670,
+ FIXED_TABLE_SIZE + 686,
+ FIXED_TABLE_SIZE + 718,
+ FIXED_TABLE_SIZE + 782,
+ FIXED_TABLE_SIZE + 912,
+ FIXED_TABLE_SIZE + 1168,
+ FIXED_TABLE_SIZE + 1680,
+ FIXED_TABLE_SIZE + 2704
+};
+
static int DecodeImageStream(int xsize, int ysize,
int is_level0,
VP8LDecoder* const dec,
@@ -151,31 +177,69 @@ static WEBP_INLINE int PlaneCodeToDistan
// Decodes the next Huffman code from bit-stream.
// FillBitWindow(br) needs to be called at minimum every second call
// to ReadSymbol, in order to pre-fetch enough bits.
-static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
+static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
VP8LBitReader* const br) {
- const HuffmanTreeNode* node = tree->root_;
- uint32_t bits = VP8LPrefetchBits(br);
- int bitpos = br->bit_pos_;
- // Check if we find the bit combination from the Huffman lookup table.
- const int lut_ix = bits & (HUFF_LUT - 1);
- const int lut_bits = tree->lut_bits_[lut_ix];
- if (lut_bits <= HUFF_LUT_BITS) {
- VP8LSetBitPos(br, bitpos + lut_bits);
- return tree->lut_symbol_[lut_ix];
- }
- node += tree->lut_jump_[lut_ix];
- bitpos += HUFF_LUT_BITS;
- bits >>= HUFF_LUT_BITS;
-
- // Decode the value from a binary tree.
- assert(node != NULL);
- do {
- node = HuffmanTreeNextNode(node, bits & 1);
- bits >>= 1;
- ++bitpos;
- } while (HuffmanTreeNodeIsNotLeaf(node));
- VP8LSetBitPos(br, bitpos);
- return node->symbol_;
+ int nbits;
+ uint32_t val = VP8LPrefetchBits(br);
+ table += val & HUFFMAN_TABLE_MASK;
+ nbits = table->bits - HUFFMAN_TABLE_BITS;
+ if (nbits > 0) {
+ VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
+ val = VP8LPrefetchBits(br);
+ table += table->value;
+ table += val & ((1 << nbits) - 1);
+ }
+ VP8LSetBitPos(br, br->bit_pos_ + table->bits);
+ return table->value;
+}
+
+// Reads packed symbol depending on GREEN channel
+#define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask)
+#define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES
+static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
+ VP8LBitReader* const br,
+ uint32_t* const dst) {
+ const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
+ const HuffmanCode32 code = group->packed_table[val];
+ assert(group->use_packed_table);
+ if (code.bits < BITS_SPECIAL_MARKER) {
+ VP8LSetBitPos(br, br->bit_pos_ + code.bits);
+ *dst = code.value;
+ return PACKED_NON_LITERAL_CODE;
+ } else {
+ VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
+ assert(code.value >= NUM_LITERAL_CODES);
+ return code.value;
+ }
+}
+
+static int AccumulateHCode(HuffmanCode hcode, int shift,
+ HuffmanCode32* const huff) {
+ huff->bits += hcode.bits;
+ huff->value |= (uint32_t)hcode.value << shift;
+ assert(huff->bits <= HUFFMAN_TABLE_BITS);
+ return hcode.bits;
+}
+
+static void BuildPackedTable(HTreeGroup* const htree_group) {
+ uint32_t code;
+ for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
+ uint32_t bits = code;
+ HuffmanCode32* const huff = &htree_group->packed_table[bits];
+ HuffmanCode hcode = htree_group->htrees[GREEN][bits];
+ if (hcode.value >= NUM_LITERAL_CODES) {
+ huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
+ huff->value = hcode.value;
+ } else {
+ huff->bits = 0;
+ huff->value = 0;
+ bits >>= AccumulateHCode(hcode, 8, huff);
+ bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
+ bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
+ bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
+ (void)bits;
+ }
+ }
}
static int ReadHuffmanCodeLengths(
@@ -186,11 +250,11 @@ static int ReadHuffmanCodeLengths(
int symbol;
int max_symbol;
int prev_code_len = DEFAULT_CODE_LENGTH;
- HuffmanTree tree;
- int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 };
+ HuffmanCode table[1 << LENGTHS_TABLE_BITS];
- if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
- huff_codes, NUM_CODE_LENGTH_CODES)) {
+ if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
+ code_length_code_lengths,
+ NUM_CODE_LENGTH_CODES)) {
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return 0;
}
@@ -208,10 +272,13 @@ static int ReadHuffmanCodeLengths(
symbol = 0;
while (symbol < num_symbols) {
+ const HuffmanCode* p = table;
int code_len;
if (max_symbol-- == 0) break;
VP8LFillBitWindow(br);
- code_len = ReadSymbol(&tree, br);
+ p += VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK;
+ VP8LSetBitPos(br, br->bit_pos_ + p->bits);
+ code_len = p->value;
if (code_len < kCodeLengthLiterals) {
code_lengths[symbol++] = code_len;
if (code_len != 0) prev_code_len = code_len;
@@ -233,7 +300,6 @@ static int ReadHuffmanCodeLengths(
ok = 1;
End:
- VP8LHuffmanTreeFree(&tree);
if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return ok;
}
@@ -241,29 +307,25 @@ static int ReadHuffmanCodeLengths(
// 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
// tree.
static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
- int* const code_lengths, int* const huff_codes,
- HuffmanTree* const tree) {
+ int* const code_lengths, HuffmanCode* const table) {
int ok = 0;
VP8LBitReader* const br = &dec->br_;
const int simple_code = VP8LReadBits(br, 1);
+ memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
+
if (simple_code) { // Read symbols, codes & code lengths directly.
- int symbols[2];
- int codes[2];
const int num_symbols = VP8LReadBits(br, 1) + 1;
const int first_symbol_len_code = VP8LReadBits(br, 1);
// The first code is either 1 bit or 8 bit code.
- symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
- codes[0] = 0;
- code_lengths[0] = num_symbols - 1;
+ int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
+ code_lengths[symbol] = 1;
// The second code (if present), is always 8 bit long.
if (num_symbols == 2) {
- symbols[1] = VP8LReadBits(br, 8);
- codes[1] = 1;
- code_lengths[1] = num_symbols - 1;
+ symbol = VP8LReadBits(br, 8);
+ code_lengths[symbol] = 1;
}
- ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
- alphabet_size, num_symbols);
+ ok = 1;
} else { // Decode Huffman-coded code lengths.
int i;
int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
@@ -273,22 +335,20 @@ static int ReadHuffmanCode(int alphabet_
return 0;
}
- memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
-
for (i = 0; i < num_codes; ++i) {
code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
}
ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
code_lengths);
- ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes,
- alphabet_size);
}
+
ok = ok && !br->error_;
if (!ok) {
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return 0;
}
- return 1;
+ return VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
+ code_lengths, alphabet_size);
}
static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
@@ -298,10 +358,12 @@ static int ReadHuffmanCodes(VP8LDecoder*
VP8LMetadata* const hdr = &dec->hdr_;
uint32_t* huffman_image = NULL;
HTreeGroup* htree_groups = NULL;
+ HuffmanCode* huffman_tables = NULL;
+ HuffmanCode* next = NULL;
int num_htree_groups = 1;
int max_alphabet_size = 0;
int* code_lengths = NULL;
- int* huff_codes = NULL;
+ const int table_size = kTableSize[color_cache_bits];
if (allow_recursion && VP8LReadBits(br, 1)) {
// use meta Huffman codes.
@@ -338,45 +400,82 @@ static int ReadHuffmanCodes(VP8LDecoder*
}
}
+ huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
+ sizeof(HuffmanCode));
htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
- code_lengths =
- (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths));
- huff_codes =
- (int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes));
+ code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
+ sizeof(*code_lengths));
- if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) {
+ if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
goto Error;
}
+ next = huffman_tables;
for (i = 0; i < num_htree_groups; ++i) {
- HuffmanTree* const htrees = htree_groups[i].htrees_;
+ HTreeGroup* const htree_group = &htree_groups[i];
+ HuffmanCode** const htrees = htree_group->htrees;
+ int size;
+ int total_size = 0;
+ int is_trivial_literal = 1;
+ int max_bits = 0;
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
int alphabet_size = kAlphabetSize[j];
- HuffmanTree* const htree = htrees + j;
+ htrees[j] = next;
if (j == 0 && color_cache_bits > 0) {
alphabet_size += 1 << color_cache_bits;
}
- if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes,
- htree)) {
+ size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
+ if (is_trivial_literal && kLiteralMap[j] == 1) {
+ is_trivial_literal = (next->bits == 0);
+ }
+ total_size += next->bits;
+ next += size;
+ if (size == 0) {
goto Error;
}
+ if (j <= ALPHA) {
+ int local_max_bits = code_lengths[0];
+ int k;
+ for (k = 1; k < alphabet_size; ++k) {
+ if (code_lengths[k] > local_max_bits) {
+ local_max_bits = code_lengths[k];
+ }
+ }
+ max_bits += local_max_bits;
+ }
}
+ htree_group->is_trivial_literal = is_trivial_literal;
+ htree_group->is_trivial_code = 0;
+ if (is_trivial_literal) {
+ const int red = htrees[RED][0].value;
+ const int blue = htrees[BLUE][0].value;
+ const int alpha = htrees[ALPHA][0].value;
+ htree_group->literal_arb =
+ ((uint32_t)alpha << 24) | (red << 16) | blue;
+ if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
+ htree_group->is_trivial_code = 1;
+ htree_group->literal_arb |= htrees[GREEN][0].value << 8;
+ }
+ }
+ htree_group->use_packed_table = !htree_group->is_trivial_code &&
+ (max_bits < HUFFMAN_PACKED_BITS);
+ if (htree_group->use_packed_table) BuildPackedTable(htree_group);
}
- WebPSafeFree(huff_codes);
WebPSafeFree(code_lengths);
// All OK. Finalize pointers and return.
hdr->huffman_image_ = huffman_image;
hdr->num_htree_groups_ = num_htree_groups;
hdr->htree_groups_ = htree_groups;
+ hdr->huffman_tables_ = huffman_tables;
return 1;
Error:
- WebPSafeFree(huff_codes);
WebPSafeFree(code_lengths);
WebPSafeFree(huffman_image);
- VP8LHtreeGroupsFree(htree_groups, num_htree_groups);
+ WebPSafeFree(huffman_tables);
+ VP8LHtreeGroupsFree(htree_groups);
return 0;
}
@@ -716,10 +815,10 @@ static int Is8bOptimizable(const VP8LMet
// When the Huffman tree contains only one symbol, we can skip the
// call to ReadSymbol() for red/blue/alpha channels.
for (i = 0; i < hdr->num_htree_groups_; ++i) {
- const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_;
- if (htrees[RED].num_nodes_ > 1) return 0;
- if (htrees[BLUE].num_nodes_ > 1) return 0;
- if (htrees[ALPHA].num_nodes_ > 1) return 0;
+ HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
+ if (htrees[RED][0].bits > 0) return 0;
+ if (htrees[BLUE][0].bits > 0) return 0;
+ if (htrees[ALPHA][0].bits > 0) return 0;
}
return 1;
}
@@ -759,7 +858,7 @@ static int DecodeAlphaData(VP8LDecoder*
htree_group = GetHtreeGroupForPos(hdr, col, row);
}
VP8LFillBitWindow(br);
- code = ReadSymbol(&htree_group->htrees_[GREEN], br);
+ code = ReadSymbol(htree_group->htrees[GREEN], br);
if (code < NUM_LITERAL_CODES) { // Literal
data[pos] = code;
++pos;
@@ -775,7 +874,7 @@ static int DecodeAlphaData(VP8LDecoder*
int dist_code, dist;
const int length_sym = code - NUM_LITERAL_CODES;
const int length = GetCopyLength(length_sym, br);
- const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
+ const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
VP8LFillBitWindow(br);
dist_code = GetCopyDistance(dist_symbol, br);
dist = PlaneCodeToDistance(width, dist_code);
@@ -848,19 +947,29 @@ static int DecodeImageData(VP8LDecoder*
// Only update when changing tile. Note we could use this test:
// if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
// but that's actually slower and needs storing the previous col/row.
- if ((col & mask) == 0) {
- htree_group = GetHtreeGroupForPos(hdr, col, row);
+ if ((col & mask) == 0) htree_group = GetHtreeGroupForPos(hdr, col, row);
+ if (htree_group->is_trivial_code) {
+ *src = htree_group->literal_arb;
+ goto AdvanceByOne;
}
VP8LFillBitWindow(br);
- code = ReadSymbol(&htree_group->htrees_[GREEN], br);
+ if (htree_group->use_packed_table) {
+ code = ReadPackedSymbols(htree_group, br, src);
+ if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
+ } else {
+ code = ReadSymbol(htree_group->htrees[GREEN], br);
+ }
if (code < NUM_LITERAL_CODES) { // Literal
- int red, green, blue, alpha;
- red = ReadSymbol(&htree_group->htrees_[RED], br);
- green = code;
+ if (htree_group->is_trivial_literal) {
+ *src = htree_group->literal_arb | (code << 8);
+ } else {
+ int red, blue, alpha;
+ red = ReadSymbol(htree_group->htrees[RED], br);
VP8LFillBitWindow(br);
- blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
- alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
- *src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue;
+ blue = ReadSymbol(htree_group->htrees[BLUE], br);
+ alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
+ *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
+ }
AdvanceByOne:
++src;
++col;
@@ -880,7 +989,7 @@ static int DecodeImageData(VP8LDecoder*
int dist_code, dist;
const int length_sym = code - NUM_LITERAL_CODES;
const int length = GetCopyLength(length_sym, br);
- const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
+ const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
VP8LFillBitWindow(br);
dist_code = GetCopyDistance(dist_symbol, br);
dist = PlaneCodeToDistance(width, dist_code);
@@ -1038,7 +1147,8 @@ static void ClearMetadata(VP8LMetadata*
assert(hdr);
WebPSafeFree(hdr->huffman_image_);
- VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_);
+ WebPSafeFree(hdr->huffman_tables_);
+ VP8LHtreeGroupsFree(hdr->htree_groups_);
VP8LColorCacheClear(&hdr->color_cache_);
InitMetadata(hdr);
}
diff -urp libwebp-0.4.3.orig/src/dec/vp8li.h libwebp-0.4.3/src/dec/vp8li.h
--- libwebp-0.4.3.orig/src/dec/vp8li.h 2015-03-11 01:06:09.000000000 -0500
+++ libwebp-0.4.3/src/dec/vp8li.h 2021-05-17 14:11:36.392615443 -0500
@@ -50,6 +50,7 @@ typedef struct {
uint32_t *huffman_image_;
int num_htree_groups_;
HTreeGroup *htree_groups_;
+ HuffmanCode *huffman_tables_;
} VP8LMetadata;
typedef struct VP8LDecoder VP8LDecoder;
Only in libwebp-0.4.3.orig/src/mux: muxread.c.orig
diff -urp libwebp-0.4.3.orig/src/utils/huffman.c libwebp-0.4.3/src/utils/huffman.c
--- libwebp-0.4.3.orig/src/utils/huffman.c 2015-03-11 01:06:09.000000000 -0500
+++ libwebp-0.4.3/src/utils/huffman.c 2021-05-17 14:11:36.392615443 -0500
@@ -18,302 +18,192 @@
#include "../utils/utils.h"
#include "../webp/format_constants.h"
-// Uncomment the following to use look-up table for ReverseBits()
-// (might be faster on some platform)
-// #define USE_LUT_REVERSE_BITS
-
// Huffman data read via DecodeImageStream is represented in two (red and green)
// bytes.
#define MAX_HTREE_GROUPS 0x10000
-#define NON_EXISTENT_SYMBOL (-1)
-
-static void TreeNodeInit(HuffmanTreeNode* const node) {
- node->children_ = -1; // means: 'unassigned so far'
-}
-
-static int NodeIsEmpty(const HuffmanTreeNode* const node) {
- return (node->children_ < 0);
-}
-
-static int IsFull(const HuffmanTree* const tree) {
- return (tree->num_nodes_ == tree->max_nodes_);
-}
-
-static void AssignChildren(HuffmanTree* const tree,
- HuffmanTreeNode* const node) {
- HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
- node->children_ = (int)(children - node);
- assert(children - node == (int)(children - node));
- tree->num_nodes_ += 2;
- TreeNodeInit(children + 0);
- TreeNodeInit(children + 1);
-}
-
-// A Huffman tree is a full binary tree; and in a full binary tree with L
-// leaves, the total number of nodes N = 2 * L - 1.
-static int HuffmanTreeMaxNodes(int num_leaves) {
- return (2 * num_leaves - 1);
-}
-
-static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
- assert(tree != NULL);
- tree->root_ =
- (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
- return (tree->root_ != NULL);
-}
-
-static int TreeInit(HuffmanTree* const tree, int num_leaves) {
- assert(tree != NULL);
- if (num_leaves == 0) return 0;
- tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
- assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
- if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
- TreeNodeInit(tree->root_); // Initialize root.
- tree->num_nodes_ = 1;
- memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
- memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
- return 1;
-}
-
-void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
- if (tree != NULL) {
- WebPSafeFree(tree->root_);
- tree->root_ = NULL;
- tree->max_nodes_ = 0;
- tree->num_nodes_ = 0;
- }
-}
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
HTreeGroup* const htree_groups =
- (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
- assert(num_htree_groups <= MAX_HTREE_GROUPS);
+ (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
if (htree_groups == NULL) {
return NULL;
}
+ assert(num_htree_groups <= MAX_HTREE_GROUPS);
return htree_groups;
}
-void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
+void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
if (htree_groups != NULL) {
- int i, j;
- for (i = 0; i < num_htree_groups; ++i) {
- HuffmanTree* const htrees = htree_groups[i].htrees_;
- for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
- VP8LHuffmanTreeFree(&htrees[j]);
- }
- }
WebPSafeFree(htree_groups);
}
}
-int VP8LHuffmanCodeLengthsToCodes(
- const int* const code_lengths, int code_lengths_size,
- int* const huff_codes) {
- int symbol;
- int code_len;
- int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int curr_code;
- int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- int max_code_length = 0;
+// Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
+// bit-wise reversal of the len least significant bits of key.
+static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
+ uint32_t step = 1 << (len - 1);
+ while (key & step) {
+ step >>= 1;
+ }
+ return (key & (step - 1)) + step;
+}
+
+// Stores code in table[0], table[step], table[2*step], ..., table[end].
+// Assumes that end is an integer multiple of step.
+static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
+ int step, int end,
+ HuffmanCode code) {
+ assert(end % step == 0);
+ do {
+ end -= step;
+ table[end] = code;
+ } while (end > 0);
+}
+
+// Returns the table width of the next 2nd level table. count is the histogram
+// of bit lengths for the remaining symbols, len is the code length of the next
+// processed symbol
+static WEBP_INLINE int NextTableBitSize(const int* const count,
+ int len, int root_bits) {
+ int left = 1 << (len - root_bits);
+ while (len < MAX_ALLOWED_CODE_LENGTH) {
+ left -= count[len];
+ if (left <= 0) break;
+ ++len;
+ left <<= 1;
+ }
+ return len - root_bits;
+}
+
+int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
+ const int* const code_lengths,
+ int code_lengths_size) {
+ HuffmanCode* table; // next available space in table
+ int len; // current code length
+ int symbol; // symbol index in original or sorted table
+ int total_size; // sum of root table size and 2nd level table sizes
+ int* sorted = NULL; // symbols sorted by code length
+ int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
+ // number of codes of each length
+ int offset[MAX_ALLOWED_CODE_LENGTH + 1];
+ // offsets in sorted table for each length
+ assert(code_lengths_size != 0);
assert(code_lengths != NULL);
- assert(code_lengths_size > 0);
- assert(huff_codes != NULL);
-
- // Calculate max code length.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > max_code_length) {
- max_code_length = code_lengths[symbol];
- }
- }
- if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
-
- // Calculate code length histogram.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- ++code_length_hist[code_lengths[symbol]];
- }
- code_length_hist[0] = 0;
-
- // Calculate the initial values of 'next_codes' for each code length.
- // next_codes[code_len] denotes the code to be assigned to the next symbol
- // of code length 'code_len'.
- curr_code = 0;
- next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
- for (code_len = 1; code_len <= max_code_length; ++code_len) {
- curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
- next_codes[code_len] = curr_code;
- }
+ assert(root_table != NULL);
+ assert(root_bits > 0);
- // Get symbols.
+ // Build histogram of code lengths.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
- } else {
- huff_codes[symbol] = NON_EXISTENT_SYMBOL;
+ if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
+ return 0;
}
+ ++count[code_lengths[symbol]];
}
- return 1;
-}
-#ifndef USE_LUT_REVERSE_BITS
-
-static int ReverseBitsShort(int bits, int num_bits) {
- int retval = 0;
- int i;
- assert(num_bits <= 8); // Not a hard requirement, just for coherency.
- for (i = 0; i < num_bits; ++i) {
- retval <<= 1;
- retval |= bits & 1;
- bits >>= 1;
+ // Error, all code lengths are zeros.
+ if (count[0] == code_lengths_size) {
+ return 0;
}
- return retval;
-}
-
-#else
-
-static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
- 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
- 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
-};
-
-static int ReverseBitsShort(int bits, int num_bits) {
- const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
- assert(num_bits <= 8);
- return v >> (8 - num_bits);
-}
-
-#endif
-static int TreeAddSymbol(HuffmanTree* const tree,
- int symbol, int code, int code_length) {
- int step = HUFF_LUT_BITS;
- int base_code;
- HuffmanTreeNode* node = tree->root_;
- const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
- assert(symbol == (int16_t)symbol);
- if (code_length <= HUFF_LUT_BITS) {
- int i;
- base_code = ReverseBitsShort(code, code_length);
- for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
- const int idx = base_code | (i << code_length);
- tree->lut_symbol_[idx] = (int16_t)symbol;
- tree->lut_bits_[idx] = code_length;
- }
- } else {
- base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
- HUFF_LUT_BITS);
- }
- while (code_length-- > 0) {
- if (node >= max_node) {
+ // Generate offsets into sorted symbol table by code length.
+ offset[1] = 0;
+ for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
+ if (count[len] > (1 << len)) {
return 0;
}
- if (NodeIsEmpty(node)) {
- if (IsFull(tree)) return 0; // error: too many symbols.
- AssignChildren(tree, node);
- } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; // leaf is already occupied.
- }
- node += node->children_ + ((code >> code_length) & 1);
- if (--step == 0) {
- tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
- }
+ offset[len + 1] = offset[len] + count[len];
}
- if (NodeIsEmpty(node)) {
- node->children_ = 0; // turn newly created node into a leaf.
- } else if (HuffmanTreeNodeIsNotLeaf(node)) {
- return 0; // trying to assign a symbol to already used code.
- }
- node->symbol_ = symbol; // Add symbol in this node.
- return 1;
-}
-int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- int* const codes,
- int code_lengths_size) {
- int symbol;
- int num_symbols = 0;
- int root_symbol = 0;
-
- assert(tree != NULL);
- assert(code_lengths != NULL);
+ sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
+ if (sorted == NULL) {
+ return 0;
+ }
- // Find out number of symbols and the root symbol.
+ // Sort symbols by length, by symbol order within each length.
for (symbol = 0; symbol < code_lengths_size; ++symbol) {
+ const int symbol_code_length = code_lengths[symbol];
if (code_lengths[symbol] > 0) {
- // Note: code length = 0 indicates non-existent symbol.
- ++num_symbols;
- root_symbol = symbol;
+ sorted[offset[symbol_code_length]++] = symbol;
}
}
- // Initialize the tree. Will fail for num_symbols = 0
- if (!TreeInit(tree, num_symbols)) return 0;
+ table = root_table;
+ total_size = 1 << root_bits;
- // Build tree.
- if (num_symbols == 1) { // Trivial case.
- const int max_symbol = code_lengths_size;
- if (root_symbol < 0 || root_symbol >= max_symbol) {
- VP8LHuffmanTreeFree(tree);
- return 0;
- }
- return TreeAddSymbol(tree, root_symbol, 0, 0);
- } else { // Normal case.
- int ok = 0;
- memset(codes, 0, code_lengths_size * sizeof(*codes));
-
- if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
- codes)) {
- goto End;
+ // Special case code with only one value.
+ if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
+ HuffmanCode code;
+ code.bits = 0;
+ code.value = (uint16_t)sorted[0];
+ ReplicateValue(table, 1, total_size, code);
+ WebPSafeFree(sorted);
+ return total_size;
+ }
+
+ {
+ int step; // step size to replicate values in current table
+ uint32_t low = -1; // low bits for current root entry
+ uint32_t mask = total_size - 1; // mask for low bits
+ uint32_t key = 0; // reversed prefix code
+ int num_nodes = 1; // number of Huffman tree nodes
+ int num_open = 1; // number of open branches in current tree level
+ int table_bits = root_bits; // key length of current table
+ int table_size = 1 << table_bits; // size of current table
+ symbol = 0;
+ // Fill in root table.
+ for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
+ num_open <<= 1;
+ num_nodes += num_open;
+ num_open -= count[len];
+ if (num_open < 0) {
+ WebPSafeFree(sorted);
+ return 0;
+ }
+ for (; count[len] > 0; --count[len]) {
+ HuffmanCode code;
+ code.bits = (uint8_t)len;
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key], step, table_size, code);
+ key = GetNextKey(key, len);
+ }
}
- // Add symbols one-by-one.
- for (symbol = 0; symbol < code_lengths_size; ++symbol) {
- if (code_lengths[symbol] > 0) {
- if (!TreeAddSymbol(tree, symbol, codes[symbol],
- code_lengths[symbol])) {
- goto End;
+ // Fill in 2nd level tables and add pointers to root table.
+ for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
+ ++len, step <<= 1) {
+ num_open <<= 1;
+ num_nodes += num_open;
+ num_open -= count[len];
+ if (num_open < 0) {
+ WebPSafeFree(sorted);
+ return 0;
+ }
+ for (; count[len] > 0; --count[len]) {
+ HuffmanCode code;
+ if ((key & mask) != low) {
+ table += table_size;
+ table_bits = NextTableBitSize(count, len, root_bits);
+ table_size = 1 << table_bits;
+ total_size += table_size;
+ low = key & mask;
+ root_table[low].bits = (uint8_t)(table_bits + root_bits);
+ root_table[low].value = (uint16_t)((table - root_table) - low);
}
+ code.bits = (uint8_t)(len - root_bits);
+ code.value = (uint16_t)sorted[symbol++];
+ ReplicateValue(&table[key >> root_bits], step, table_size, code);
+ key = GetNextKey(key, len);
}
}
- ok = 1;
- End:
- ok = ok && IsFull(tree);
- if (!ok) VP8LHuffmanTreeFree(tree);
- return ok;
- }
-}
-int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- const int* const codes,
- const int* const symbols, int max_symbol,
- int num_symbols) {
- int ok = 0;
- int i;
- assert(tree != NULL);
- assert(code_lengths != NULL);
- assert(codes != NULL);
- assert(symbols != NULL);
-
- // Initialize the tree. Will fail if num_symbols = 0.
- if (!TreeInit(tree, num_symbols)) return 0;
-
- // Add symbols one-by-one.
- for (i = 0; i < num_symbols; ++i) {
- if (codes[i] != NON_EXISTENT_SYMBOL) {
- if (symbols[i] < 0 || symbols[i] >= max_symbol) {
- goto End;
- }
- if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
- goto End;
- }
+ // Check if tree is full.
+ if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
+ WebPSafeFree(sorted);
+ return 0;
}
}
- ok = 1;
- End:
- ok = ok && IsFull(tree);
- if (!ok) VP8LHuffmanTreeFree(tree);
- return ok;
+
+ WebPSafeFree(sorted);
+ return total_size;
}
diff -urp libwebp-0.4.3.orig/src/utils/huffman.h libwebp-0.4.3/src/utils/huffman.h
--- libwebp-0.4.3.orig/src/utils/huffman.h 2015-03-11 01:06:09.000000000 -0500
+++ libwebp-0.4.3/src/utils/huffman.h 2021-05-17 14:17:20.682432970 -0500
@@ -22,78 +22,65 @@
extern "C" {
#endif
-// A node of a Huffman tree.
+#define HUFFMAN_TABLE_BITS 8
+#define HUFFMAN_TABLE_MASK ((1 << HUFFMAN_TABLE_BITS) - 1)
+
+#define LENGTHS_TABLE_BITS 7
+#define LENGTHS_TABLE_MASK ((1 << LENGTHS_TABLE_BITS) - 1)
+
+
+// Huffman lookup table entry
typedef struct {
- int symbol_;
- int children_; // delta offset to both children (contiguous) or 0 if leaf.
-} HuffmanTreeNode;
-
-// Huffman Tree.
-#define HUFF_LUT_BITS 7
-#define HUFF_LUT (1U << HUFF_LUT_BITS)
-typedef struct HuffmanTree HuffmanTree;
-struct HuffmanTree {
- // Fast lookup for short bit lengths.
- uint8_t lut_bits_[HUFF_LUT];
- int16_t lut_symbol_[HUFF_LUT];
- int16_t lut_jump_[HUFF_LUT];
- // Complete tree for lookups.
- HuffmanTreeNode* root_; // all the nodes, starting at root.
- int max_nodes_; // max number of nodes
- int num_nodes_; // number of currently occupied nodes
-};
+ uint8_t bits; // number of bits used for this symbol
+ uint16_t value; // symbol value or table offset
+} HuffmanCode;
-// Huffman Tree group.
+// long version for holding 32b values
+typedef struct {
+ int bits; // number of bits used for this symbol,
+ // or an impossible value if not a literal code.
+ uint32_t value; // 32b packed ARGB value if literal,
+ // or non-literal symbol otherwise
+} HuffmanCode32;
+
+#define HUFFMAN_PACKED_BITS 6
+#define HUFFMAN_PACKED_TABLE_SIZE (1u << HUFFMAN_PACKED_BITS)
+
+// Huffman table group.
+// Includes special handling for the following cases:
+// - is_trivial_literal: one common literal base for RED/BLUE/ALPHA (not GREEN)
+// - is_trivial_code: only 1 code (no bit is read from bitstream)
+// - use_packed_table: few enough literal symbols, so all the bit codes
+// can fit into a small look-up table packed_table[]
+// The common literal base, if applicable, is stored in 'literal_arb'.
typedef struct HTreeGroup HTreeGroup;
struct HTreeGroup {
- HuffmanTree htrees_[HUFFMAN_CODES_PER_META_CODE];
+ HuffmanCode* htrees[HUFFMAN_CODES_PER_META_CODE];
+ int is_trivial_literal; // True, if huffman trees for Red, Blue & Alpha
+ // Symbols are trivial (have a single code).
+ uint32_t literal_arb; // If is_trivial_literal is true, this is the
+ // ARGB value of the pixel, with Green channel
+ // being set to zero.
+ int is_trivial_code; // true if is_trivial_literal with only one code
+ int use_packed_table; // use packed table below for short literal code
+ // table mapping input bits to a packed values, or escape case to literal code
+ HuffmanCode32 packed_table[HUFFMAN_PACKED_TABLE_SIZE];
};
-// Returns true if the given node is not a leaf of the Huffman tree.
-static WEBP_INLINE int HuffmanTreeNodeIsNotLeaf(
- const HuffmanTreeNode* const node) {
- return node->children_;
-}
-
-// Go down one level. Most critical function. 'right_child' must be 0 or 1.
-static WEBP_INLINE const HuffmanTreeNode* HuffmanTreeNextNode(
- const HuffmanTreeNode* node, int right_child) {
- return node + node->children_ + right_child;
-}
-
-// Releases the nodes of the Huffman tree.
-// Note: It does NOT free 'tree' itself.
-void VP8LHuffmanTreeFree(HuffmanTree* const tree);
-
// Creates the instance of HTreeGroup with specified number of tree-groups.
HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups);
// Releases the memory allocated for HTreeGroup.
-void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups);
+void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups);
-// Builds Huffman tree assuming code lengths are implicitly in symbol order.
-// The 'huff_codes' and 'code_lengths' are pre-allocated temporary memory
-// buffers, used for creating the huffman tree.
-// Returns false in case of error (invalid tree or memory error).
-int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- int* const huff_codes,
- int code_lengths_size);
-
-// Build a Huffman tree with explicitly given lists of code lengths, codes
-// and symbols. Verifies that all symbols added are smaller than max_symbol.
-// Returns false in case of an invalid symbol, invalid tree or memory error.
-int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
- const int* const code_lengths,
- const int* const codes,
- const int* const symbols, int max_symbol,
- int num_symbols);
-
-// Utility: converts Huffman code lengths to corresponding Huffman codes.
-// 'huff_codes' should be pre-allocated.
-// Returns false in case of error (memory allocation, invalid codes).
-int VP8LHuffmanCodeLengthsToCodes(const int* const code_lengths,
- int code_lengths_size, int* const huff_codes);
+// Builds Huffman lookup table assuming code lengths are in symbol order.
+// The 'code_lengths' is pre-allocated temporary memory buffer used for creating
+// the huffman table.
+// Returns built table size or 0 in case of error (invalid tree or
+// memory error).
+int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
+ const int* const code_lengths,
+ int code_lengths_size);
#ifdef __cplusplus
} // extern "C"