File R-BEND.spec of Package R-BEND
# Automatically generated by CRAN2OBS
#
# Spec file for package BEND
# This file is auto-generated using information in the package source,
# esp. Description and Summary. Improvements in that area should be
# discussed with upstream.
#
# Copyright (c) 2025 SUSE LINUX GmbH, Nuernberg, Germany.
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
#
# Please submit bugfixes or comments via http://bugs.opensuse.org/
#
%global packname BEND
%global rlibdir %{_libdir}/R/library
Name: R-%{packname}
Version: 1.1
Release: 0
Summary: Bayesian Estimation of Nonlinear Data (BEND)
Group: Development/Libraries/Other
License: MIT + file LICENSE
URL: http://cran.r-project.org/web/packages/%{packname}
Source: BEND_1.1.tar.gz
Requires: R-base
Requires: R-coda
Requires: R-label.switching
Requires: R-rjags
Requires: R-combinat
Requires: R-lpSolve
# %%if 0%%{?sle_version} > 120400 || 0%%{?is_opensuse}
# # Three others commonly needed
# BuildRequires: tex(ae.sty)
# BuildRequires: tex(fancyvrb.sty)
# BuildRequires: tex(inconsolata.sty)
# BuildRequires: tex(natbib.sty)
# %else
# BuildRequires: texlive
# %endif
# BuildRequires: texinfo
BuildRequires: fdupes
BuildRequires: R-base
BuildRequires: R-coda
BuildRequires: R-label.switching
BuildRequires: R-rjags
BuildRequires: R-combinat
BuildRequires: R-lpSolve
%description
Provides a set of models to estimate nonlinear longitudinal data using
Bayesian estimation methods. These models include the: 1) Bayesian
Piecewise Random Effects Model (Bayes_PREM()) which estimates a
piecewise random effects (mixture) model for a given number of latent
classes and a latent number of possible changepoints in each class, and
can incorporate class and outcome predictive covariates (see Lamm
(2022) <https://hdl.handle.net/11299/252533> and Lock et al., (2018)
<doi:10.1007/s11336-017-9594-5>), 2) Bayesian Crossed Random Effects
Model (Bayes_CREM()) which estimates a linear, quadratic, exponential,
or piecewise crossed random effects models where individuals are
changing groups over time (e.g., students and schools; see Rohloff et
al., (2024) <doi:10.1111/bmsp.12334>), and 3) Bayesian Bivariate
Piecewise Random Effects Model (Bayes_BPREM()) which estimates a
bivariate piecewise random effects model to jointly model two related
outcomes (e.g., reading and math achievement; see Peralta et al.,
(2022) <doi:10.1037/met0000358>).
%prep
%setup -q -c -n %{packname}
# the next line is needed, because we build without --clean in between two packages
rm -rf ~/.R
%build
%install
mkdir -p %{buildroot}%{rlibdir}
%{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname}
test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so)
rm -f %{buildroot}%{rlibdir}/R.css
%fdupes -s %{buildroot}%{rlibdir}
#%%check
#%%{_bindir}/R CMD check %%{packname}
%files
%dir %{rlibdir}/%{packname}
%doc %{rlibdir}/%{packname}/DESCRIPTION
%{rlibdir}/%{packname}/INDEX
%license %{rlibdir}/%{packname}/LICENSE
%{rlibdir}/%{packname}/Meta
%{rlibdir}/%{packname}/NAMESPACE
%doc %{rlibdir}/%{packname}/NEWS.md
%{rlibdir}/%{packname}/R
%{rlibdir}/%{packname}/data
%doc %{rlibdir}/%{packname}/help
%doc %{rlibdir}/%{packname}/html
%changelog