File R-sensitivityIxJ.spec of Package R-sensitivityIxJ
# Automatically generated by CRAN2OBS
#
# Spec file for package sensitivityIxJ
# This file is auto-generated using information in the package source,
# esp. Description and Summary. Improvements in that area should be
# discussed with upstream.
#
# Copyright (c) 2025 SUSE LINUX GmbH, Nuernberg, Germany.
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
#
# Please submit bugfixes or comments via http://bugs.opensuse.org/
#
%global packname sensitivityIxJ
%global rlibdir %{_libdir}/R/library
Name: R-%{packname}
Version: 0.1.5
Release: 0
Summary: Exact Nonparametric Sensitivity Analysis for I by J Contingency Tables
Group: Development/Libraries/Other
License: GPL-3
URL: http://cran.r-project.org/web/packages/%{packname}
Source: sensitivityIxJ_0.1.5.tar.gz
Requires: R-base
Requires: R-Rcpp
# %%if 0%%{?sle_version} > 120400 || 0%%{?is_opensuse}
# # Three others commonly needed
# BuildRequires: tex(ae.sty)
# BuildRequires: tex(fancyvrb.sty)
# BuildRequires: tex(inconsolata.sty)
# BuildRequires: tex(natbib.sty)
# %else
# BuildRequires: texlive
# %endif
# BuildRequires: texinfo
BuildRequires: fdupes
BuildRequires: R-base
BuildRequires: R-Rcpp-devel
BuildRequires: gcc gcc-c++ gcc-fortran
Suggests: R-rbounds
%description
Implements exact, normally approximated, and sampling-based sensitivity
analysis for observational studies with contingency tables. Includes
exact (kernel-based), normal approximation, and sequential importance
sampling (SIS) methods using 'Rcpp' for computational efficiency. The
methods build upon the framework introduced in Rosenbaum (2002)
<doi:10.1007/978-1-4757-3692-2> and the generalized design sensitivity
framework developed by Chiu (2025) <doi:10.48550/arXiv.2507.17207>.
%prep
%setup -q -c -n %{packname}
# the next line is needed, because we build without --clean in between two packages
rm -rf ~/.R
%build
%install
mkdir -p %{buildroot}%{rlibdir}
%{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname}
test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so)
rm -f %{buildroot}%{rlibdir}/R.css
%fdupes -s %{buildroot}%{rlibdir}
#%%check
#%%{_bindir}/R CMD check %%{packname}
%files
%dir %{rlibdir}/%{packname}
%doc %{rlibdir}/%{packname}/DESCRIPTION
%{rlibdir}/%{packname}/INDEX
%{rlibdir}/%{packname}/Meta
%{rlibdir}/%{packname}/NAMESPACE
%{rlibdir}/%{packname}/R
%doc %{rlibdir}/%{packname}/help
%doc %{rlibdir}/%{packname}/html
%{rlibdir}/%{packname}/libs
%changelog