File R-singleCellHaystack.spec of Package R-singleCellHaystack

# Automatically generated by CRAN2OBS
# 
# Spec file for package singleCellHaystack 
# This file is auto-generated using information in the package source, 
# esp. Description and Summary. Improvements in that area should be 
# discussed with upstream. 
# 
# Copyright (c) 2025 SUSE LINUX GmbH, Nuernberg, Germany. 
# 
# All modifications and additions to the file contributed by third parties 
# remain the property of their copyright owners, unless otherwise agreed 
# upon. The license for this file, and modifications and additions to the 
# file, is the same license as for the pristine package itself (unless the 
# license for the pristine package is not an Open Source License, in which 
# case the license is the MIT License). An "Open Source License" is a 
# license that conforms to the Open Source Definition (Version 1.9) 
# published by the Open Source Initiative. 
#  
# Please submit bugfixes or comments via http://bugs.opensuse.org/ 
# 
 
%global packname  singleCellHaystack 
%global rlibdir   %{_libdir}/R/library 
 
Name:           R-%{packname} 
Version:        1.0.2 
Release:        0 
Summary:        A Universal Differential Expression Prediction Tool for Single-Cell and Spatial Genomics Data 
Group:          Development/Libraries/Other 
License:        MIT + file LICENSE 
URL:            http://cran.r-project.org/web/packages/%{packname} 
Source:         singleCellHaystack_1.0.2.tar.gz 
Requires:       R-base 
Requires:	R-ggplot2
Requires:	R-reshape2
Requires:	R-cli
Requires:	R-glue
Requires:	R-gtable
Requires:	R-isoband
Requires:	R-lifecycle
Requires:	R-rlang
Requires:	R-scales
Requires:	R-tibble
Requires:	R-vctrs
Requires:	R-withr
Requires:	R-plyr
Requires:	R-Rcpp
Requires:	R-stringr
Requires:	R-farver
Requires:	R-labeling
Requires:	R-R6
Requires:	R-RColorBrewer
Requires:	R-viridisLite
Requires:	R-magrittr
Requires:	R-stringi
Requires:	R-pillar
Requires:	R-pkgconfig
Requires:	R-utf8
 
# %%if 0%%{?sle_version} > 120400 || 0%%{?is_opensuse} 
# # Three others commonly needed 
# BuildRequires:  tex(ae.sty) 
# BuildRequires:  tex(fancyvrb.sty) 
# BuildRequires:  tex(inconsolata.sty) 
# BuildRequires:  tex(natbib.sty) 
# %else 
# BuildRequires:  texlive 
# %endif 
# BuildRequires:  texinfo 
BuildRequires:  fdupes 
BuildRequires:  R-base 
BuildRequires: 	R-ggplot2
BuildRequires: 	R-reshape2
BuildRequires: 	R-cli
BuildRequires: 	R-glue
BuildRequires: 	R-gtable
BuildRequires: 	R-isoband
BuildRequires: 	R-lifecycle
BuildRequires: 	R-rlang
BuildRequires: 	R-scales
BuildRequires: 	R-tibble
BuildRequires: 	R-vctrs
BuildRequires: 	R-withr
BuildRequires: 	R-plyr
BuildRequires: 	R-Rcpp-devel
BuildRequires: 	R-stringr
BuildRequires: 	R-farver
BuildRequires: 	R-labeling
BuildRequires: 	R-R6
BuildRequires: 	R-RColorBrewer
BuildRequires: 	R-viridisLite
BuildRequires: 	R-magrittr
BuildRequires: 	R-stringi
BuildRequires: 	R-pillar
BuildRequires: 	R-pkgconfig
BuildRequires: 	R-utf8
 
Suggests:	R-knitr
Suggests:	R-rmarkdown
Suggests:	R-testthat
Suggests:	R-SummarizedExperiment
Suggests:	R-SingleCellExperiment
Suggests:	R-SeuratObject
Suggests:	R-cowplot
Suggests:	R-wrswoR
Suggests:	R-sparseMatrixStats
Suggests:	R-ComplexHeatmap
Suggests:	R-patchwork
%description 
One key exploratory analysis step in single-cell genomics data analysis 
is the prediction of features with different activity levels. For 
example, we want to predict differentially expressed genes (DEGs) in 
single-cell RNA-seq data, spatial DEGs in spatial transcriptomics data, 
or differentially accessible regions (DARs) in single-cell ATAC-seq 
data. 'singleCellHaystack' predicts differentially active features in 
single cell omics datasets without relying on the clustering of cells 
into arbitrary clusters. 'singleCellHaystack' uses Kullback-Leibler 
divergence to find features (e.g., genes, genomic regions, etc) that 
are active in subsets of cells that are non-randomly positioned inside 
an input space (such as 1D trajectories, 2D tissue sections, 
multi-dimensional embeddings, etc). For the theoretical background of 
'singleCellHaystack' we refer to our original paper Vandenbon and Diez 
(Nature Communications, 2020) <doi:10.1038/s41467-020-17900-3> and our 
update Vandenbon and Diez (Scientific Reports, 2023) 
<doi:10.1038/s41598-023-38965-2>. 
 
%prep 
%setup -q -c -n %{packname} 
# the next line is needed, because we build without --clean in between two packages 
rm -rf ~/.R  
 
 
%build 
 
%install 
mkdir -p %{buildroot}%{rlibdir} 
%{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} 
test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) 
rm -f %{buildroot}%{rlibdir}/R.css 
%fdupes -s %{buildroot}%{rlibdir} 
 
#%%check 
#%%{_bindir}/R CMD check %%{packname} 
 
%files 
%dir %{rlibdir}/%{packname} 
%{rlibdir}/%{packname}/CITATION
%doc %{rlibdir}/%{packname}/DESCRIPTION
%{rlibdir}/%{packname}/INDEX
%license %{rlibdir}/%{packname}/LICENSE
%{rlibdir}/%{packname}/Meta
%{rlibdir}/%{packname}/NAMESPACE
%doc %{rlibdir}/%{packname}/NEWS.md
%{rlibdir}/%{packname}/R
%{rlibdir}/%{packname}/data
%{rlibdir}/%{packname}/doc
%doc %{rlibdir}/%{packname}/help
%doc %{rlibdir}/%{packname}/html
 
%changelog 
openSUSE Build Service is sponsored by