File R-tsintermittent.spec of Package R-tsintermittent
# Automatically generated by CRAN2OBS
#
# Spec file for package tsintermittent
# This file is auto-generated using information in the package source,
# esp. Description and Summary. Improvements in that area should be
# discussed with upstream.
#
# Copyright (c) 2025 SUSE LINUX GmbH, Nuernberg, Germany.
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
#
# Please submit bugfixes or comments via http://bugs.opensuse.org/
#
%global packname tsintermittent
%global rlibdir %{_libdir}/R/library
Name: R-%{packname}
Version: 1.10
Release: 0
Summary: Intermittent Time Series Forecasting
Group: Development/Libraries/Other
License: GPL (>= 2)
URL: http://cran.r-project.org/web/packages/%{packname}
Source: tsintermittent_1.10.tar.gz
Requires: R-base
Requires: R-MAPA
Requires: R-forecast
Requires: R-RColorBrewer
Requires: R-smooth
Requires: R-colorspace
Requires: R-fracdiff
Requires: R-generics
Requires: R-ggplot2
Requires: R-lmtest
Requires: R-magrittr
Requires: R-Rcpp
Requires: R-timeDate
Requires: R-tseries
Requires: R-urca
Requires: R-withr
Requires: R-zoo
Requires: R-RcppArmadillo
Requires: R-greybox
Requires: R-pracma
Requires: R-statmod
Requires: R-nloptr
Requires: R-xtable
Requires: R-cli
Requires: R-glue
Requires: R-gtable
Requires: R-isoband
Requires: R-lifecycle
Requires: R-rlang
Requires: R-scales
Requires: R-tibble
Requires: R-vctrs
Requires: R-texreg
Requires: R-quadprog
Requires: R-quantmod
Requires: R-jsonlite
Requires: R-xts
Requires: R-TTR
Requires: R-curl
Requires: R-farver
Requires: R-labeling
Requires: R-R6
Requires: R-viridisLite
Requires: R-httr
Requires: R-pillar
Requires: R-pkgconfig
Requires: R-mime
Requires: R-openssl
Requires: R-utf8
Requires: R-askpass
Requires: R-sys
# %%if 0%%{?sle_version} > 120400 || 0%%{?is_opensuse}
# # Three others commonly needed
# BuildRequires: tex(ae.sty)
# BuildRequires: tex(fancyvrb.sty)
# BuildRequires: tex(inconsolata.sty)
# BuildRequires: tex(natbib.sty)
# %else
# BuildRequires: texlive
# %endif
# BuildRequires: texinfo
BuildRequires: fdupes
BuildRequires: R-base
BuildRequires: R-MAPA
BuildRequires: R-forecast
BuildRequires: R-RColorBrewer
BuildRequires: R-smooth
BuildRequires: R-colorspace
BuildRequires: R-fracdiff
BuildRequires: R-generics
BuildRequires: R-ggplot2
BuildRequires: R-lmtest
BuildRequires: R-magrittr
BuildRequires: R-Rcpp-devel
BuildRequires: R-timeDate
BuildRequires: R-tseries
BuildRequires: R-urca
BuildRequires: R-withr
BuildRequires: R-zoo
BuildRequires: R-RcppArmadillo-devel
BuildRequires: R-greybox
BuildRequires: R-pracma
BuildRequires: R-statmod
BuildRequires: R-nloptr
BuildRequires: R-xtable
BuildRequires: R-cli
BuildRequires: R-glue
BuildRequires: R-gtable
BuildRequires: R-isoband
BuildRequires: R-lifecycle
BuildRequires: R-rlang
BuildRequires: R-scales
BuildRequires: R-tibble
BuildRequires: R-vctrs
BuildRequires: R-texreg
BuildRequires: R-quadprog
BuildRequires: R-quantmod
BuildRequires: R-jsonlite
BuildRequires: R-xts
BuildRequires: R-TTR
BuildRequires: R-curl
BuildRequires: R-farver
BuildRequires: R-labeling
BuildRequires: R-R6
BuildRequires: R-viridisLite
BuildRequires: R-httr
BuildRequires: R-pillar
BuildRequires: R-pkgconfig
BuildRequires: R-mime
BuildRequires: R-openssl
BuildRequires: R-utf8
BuildRequires: R-askpass
BuildRequires: R-sys
%description
Time series methods for intermittent demand forecasting. Includes
Croston's method and its variants (Moving Average, SBA), and the TSB
method. Users can obtain optimal parameters on a variety of loss
functions, or use fixed ones (Kourenztes (2014)
<doi:10.1016/j.ijpe.2014.06.007>). Intermittent time series
classification methods and iMAPA that uses multiple temporal
aggregation levels are also provided (Petropoulos & Kourenztes (2015)
<doi:10.1057/jors.2014.62>).
%prep
%setup -q -c -n %{packname}
# the next line is needed, because we build without --clean in between two packages
rm -rf ~/.R
%build
%install
mkdir -p %{buildroot}%{rlibdir}
%{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname}
test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so)
rm -f %{buildroot}%{rlibdir}/R.css
%fdupes -s %{buildroot}%{rlibdir}
#%%check
#%%{_bindir}/R CMD check %%{packname}
%files
%dir %{rlibdir}/%{packname}
%doc %{rlibdir}/%{packname}/DESCRIPTION
%{rlibdir}/%{packname}/INDEX
%{rlibdir}/%{packname}/Meta
%{rlibdir}/%{packname}/NAMESPACE
%{rlibdir}/%{packname}/R
%{rlibdir}/%{packname}/data
%doc %{rlibdir}/%{packname}/help
%doc %{rlibdir}/%{packname}/html
%changelog