File python-tokenizers.spec of Package python-tokenizers
#
# spec file for package python-tokenizers
#
# Copyright (c) 2024 SUSE LLC
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
# Please submit bugfixes or comments via https://bugs.opensuse.org/
#
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
Name: python-tokenizers
Version: 0.19.1
Release: 0
Summary: Provides an implementation of today's most used tokenizers
License: Apache-2.0
URL: https://github.com/huggingface/tokenizers
Source0: https://github.com/huggingface/tokenizers/archive/refs/tags/v%{version}.tar.gz#/tokenizers-%{version}.tar.gz
Source1: vendor.tar.gz
BuildRequires: %{python_module devel}
BuildRequires: %{python_module maturin}
BuildRequires: %{python_module pip}
BuildRequires: %{python_module tomli}
BuildRequires: %{python_module setuptools}
BuildRequires: cargo-packaging
BuildRequires: gcc-c++
BuildRequires: fdupes
BuildRequires: python-rpm-macros
BuildRequires: python-rpm-macros
%python_subpackages
%description
Provides an implementation of today's most used tokenizers, with a focus on
performance and versatility.
* Train new vocabularies and tokenize, using today's most used tokenizers.
* Extremely fast (both training and tokenization), thanks to the Rust
implementation. Takes less than 20 seconds to tokenize a GB of text on a
server's CPU.
* Easy to use, but also extremely versatile.
* Designed for research and production.
* Normalization comes with alignments tracking. It's always possible to get the
part of the original sentence that corresponds to a given token.
* Does all the pre-processing: Truncate, Pad, add the special tokens your model
needs.
%prep
%autosetup -p1 -n tokenizers-%{version}
cd bindings/python
tar xzf %{S:1}
%build
cd bindings/python
%pyproject_wheel
%install
cd bindings/python
%pyproject_install
%python_expand %fdupes %{buildroot}/%{$python_sitearch}/*
%check
%files %{python_files}
%license LICENSE
%doc README.md
%{python_sitearch}/tokenizers*
%changelog