File qutip-3.1.0-correlation.patch of Package python-qutip

diff -Npru qutip-3.1.0.orig/qutip/correlation.py qutip-3.1.0/qutip/correlation.py
--- qutip-3.1.0.orig/qutip/correlation.py	2016-03-31 16:36:44.768351980 -0400
+++ qutip-3.1.0/qutip/correlation.py	2016-03-31 16:37:50.696212288 -0400
@@ -74,7 +74,7 @@ def correlation_2op_1t(H, state0, taulis
                        options=Options(ntraj=[20, 100])):
     """
     Calculate the two-operator two-time correlation function:
-    :math: `\left<A(t+\\tau)B(t)\\right>`
+    :math:`\left<A(t+\\tau)B(t)\\right>`
     along one time axis using the quantum regression theorem and the evolution
     solver indicated by the `solver` parameter.
 
@@ -170,7 +170,7 @@ def correlation_2op_2t(H, state0, tlist,
     tlist : *list* / *array*
         list of times for :math:`t`. tlist must be positive and contain the
         element `0`. When taking steady-steady correlations only one tlist
-        value is necessary, i.e. :math:`t \rightarrow \infty`; here tlist is
+        value is necessary, i.e. :math:`t \\rightarrow \\infty`; here tlist is
         automatically set, ignoring user input.
 
     taulist : *list* / *array*
@@ -336,7 +336,7 @@ def correlation_3op_2t(H, state0, tlist,
     tlist : *list* / *array*
         list of times for :math:`t`. tlist must be positive and contain the
         element `0`. When taking steady-steady correlations only one tlist
-        value is necessary, i.e. :math:`t \rightarrow \infty`; here tlist is
+        value is necessary, i.e. :math:`t \\rightarrow \infty`; here tlist is
         automatically set, ignoring user input.
 
     taulist : *list* / *array*
@@ -402,7 +402,7 @@ def coherence_function_g1(H, taulist, c_
 
     .. math::
 
-        g^{(1)}(\\tau) = \lim_{t \to \infty}
+        g^{(1)}(\\tau) = \lim_{t \\to \infty}
         \\frac{\\langle a^\\dagger(t+\\tau)a(t)\\rangle}
         {\\langle a^\\dagger(t)a(t)\\rangle}
 
@@ -463,7 +463,7 @@ def coherence_function_g2(H, taulist, c_
 
     .. math::
 
-        g^{(2)}(\\tau) = \lim_{t \to \infty}
+        g^{(2)}(\\tau) = \lim_{t \\to \infty}
         \\frac{\\langle a^\\dagger(t)a^\\dagger(t+\\tau)
         a(t+\\tau)a(t)\\rangle}
         {\\langle a^\\dagger(t)a(t)\\rangle^2}
@@ -524,13 +524,13 @@ def coherence_function_g2(H, taulist, c_
 def spectrum(H, wlist, c_ops, a_op, b_op, solver="es", use_pinv=False):
     """
     Calculate the spectrum of the correlation function
-    :math:`\lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>`,
+    :math:`\lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>`,
     i.e., the Fourier transform of the correlation function:
 
     .. math::
 
         S(\omega) = \int_{-\infty}^{\infty}
-        \lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>
+        \lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>
         e^{-i\omega\\tau} d\\tau.
 
     using the solver indicated by the `solver` parameter. Note: this spectrum
@@ -638,7 +638,7 @@ def correlation_ss(H, taulist, c_ops, a_
 
     .. math::
 
-        \lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>
+        \lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>
 
     along one time axis (given steady-state initial conditions) using the
     quantum regression theorem and the evolution solver indicated by the
@@ -665,8 +665,8 @@ def correlation_ss(H, taulist, c_ops, a_
 
     reverse : bool
         If `True`, calculate
-        :math:`\lim_{t \to \infty} \left<A(t)B(t+\\tau)\\right>` instead of
-        :math:`\lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>`.
+        :math:`\lim_{t \\to \infty} \left<A(t)B(t+\\tau)\\right>` instead of
+        :math:`\lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>`.
 
     solver : str
         choice of solver (`me` for master-equation and
@@ -726,7 +726,7 @@ def correlation(H, state0, tlist, taulis
     tlist : *list* / *array*
         list of times for :math:`t`. tlist must be positive and contain the
         element `0`. When taking steady-steady correlations only one tlist
-        value is necessary, i.e. :math:`t \rightarrow \infty`; here tlist is
+        value is necessary, i.e. :math:`t \\rightarrow \infty`; here tlist is
         automatically set, ignoring user input.
 
     taulist : *list* / *array*
@@ -890,7 +890,7 @@ def correlation_4op_2t(H, state0, tlist,
     tlist : *list* / *array*
         list of times for :math:`t`. tlist must be positive and contain the
         element `0`. When taking steady-steady correlations only one tlist
-        value is necessary, i.e. :math:`t \rightarrow \infty`; here tlist is
+        value is necessary, i.e. :math:`t \\rightarrow \infty`; here tlist is
         automatically set, ignoring user input.
 
     taulist : *list* / *array*
@@ -956,13 +956,13 @@ def correlation_4op_2t(H, state0, tlist,
 def spectrum_ss(H, wlist, c_ops, a_op, b_op):
     """
     Calculate the spectrum of the correlation function
-    :math:`\lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>`,
+    :math:`\lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>`,
     i.e., the Fourier transform of the correlation function:
 
     .. math::
 
         S(\omega) = \int_{-\infty}^{\infty}
-        \lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>
+        \lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>
         e^{-i\omega\\tau} d\\tau.
 
     using an eseries based solver Note: this spectrum is only defined for
@@ -1006,13 +1006,13 @@ def spectrum_ss(H, wlist, c_ops, a_op, b
 def spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv=False):
     """
     Calculate the spectrum of the correlation function
-    :math:`\lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>`,
+    :math:`\lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>`,
     i.e., the Fourier transform of the correlation function:
 
     .. math::
 
         S(\omega) = \int_{-\infty}^{\infty}
-        \lim_{t \to \infty} \left<A(t+\\tau)B(t)\\right>
+        \lim_{t \\to \infty} \left<A(t+\\tau)B(t)\\right>
         e^{-i\omega\\tau} d\\tau.
 
     using a psuedo-inverse method. Note: this spectrum is only defined for
@@ -1065,7 +1065,7 @@ def _correlation_2t(H, state0, tlist, ta
     """
     Internal function for calling solvers in order to calculate the
     three-operator two-time correlation function:
-    <A(t)B(t+tau)C(t)>
+    :math:`\left<A(t)B(t+\\tau)C(t)\\right>`
     """
 
     # Note: the current form of the correlator is sufficient for all possible
@@ -1104,7 +1104,7 @@ def _correlation_me_2t(H, state0, tlist,
     """
     Internal function for calculating the three-operator two-time
     correlation function:
-    <A(t)B(t+tau)C(t)>
+    :math:`\left<A(t)B(t+\\tau)C(t)\\right>`
     using a master equation solver.
     """
 
@@ -1148,7 +1148,7 @@ def _correlation_es_2t(H, state0, tlist,
     """
     Internal function for calculating the three-operator two-time
     correlation function:
-    <A(t)B(t+tau)C(t)>
+    :math:`\left<A(t)B(t+\\tau)C(t)\\right>`
     using an exponential series solver.
     """
 
@@ -1219,7 +1219,7 @@ def _correlation_mc_2t(H, state0, tlist,
     """
     Internal function for calculating the three-operator two-time
     correlation function:
-    <A(t)B(t+tau)C(t)>
+    :math:`\left<A(t)B(t+\\tau)C(t)\\right>`
     using a Monte Carlo solver.
     """
 
@@ -1292,7 +1292,7 @@ def _correlation_mc_2t(H, state0, tlist,
                 ]
 
                 # final correlation vector computed by combining the averages
-                corr_mat[t_idx, :] += \
+                corr_mat[t_idx, :] = corr_mat[t_idx,:] + \
                     1/(4*options.ntraj[0]) * (c_tau[0] - c_tau[2] -
                                               1j*c_tau[1] + 1j*c_tau[3])
         if t_idx == 1:
openSUSE Build Service is sponsored by